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ABSTRACT

The Defence Research Establishment Ottawa (DREO) de51qped>3
and constructed ?% high performance analog rebalance loopAfor'”
the Canadian Strapdown Gyroscope (CSG-2). This instrument is a
potentially low cost, near inertial grade, two
degree-of-freedom, tuned-rotor gyro designed and manufactured
by Litton Systems Canada Ltd., wunder contract to DREO. The
resulting loops are analyzed extensively from a control systems
point of view with the examination of such properties as
closed-loop stability, frequency and time responses and, to
some extent, stability margin, as fnterpreted from
multivariable generalizations of classical control-theoretic
notions of Nyquist plots and root locii. The results indicate
that the loops will provide sufficient closed-loop performance
to achieve the desired goals of bandwidth, maximum input rate,

low cross-axis coupling and acceleration compensation.
A
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RESUME

Le Centre de recherches pour la défense/Ottawa (CRDO) a
congu et fabriqué une boucle analogique de rétablissement
d’équilibre trés performante pour le Gyroscope canadien &
composants liés (CSG-2). Ce dispositif quasi inertiel, & deux
degrés de liberté, & rotor accordé et dont la fabrication
pourra peut-étre exiger peu de frais, a €té congu et fabriqué
par Litton Systems Canada Ltd. pour le compte du CRDO. Les
boucles réalisées sont analysées & fond du point de vue des
systémes de commande, en particulier en ce qui a trait aux
propriétés de stabilité en boucle fermée, de réponse temporelle
et en fréquence et, jusqu’'a un certain point, la marge de
stabilité, par 1’interprétation des généralisations
multivariables des concepts classiques de contrdle des
variables théoriques des diagrammes de Nyquist et des lieux des
racines, Les résultats indiquent que la performance en boucle
fermée = de ces dispositifs permettra d'obtenir les
caractéristiques nécessaires, du point de vue de la largeur de
bande, du débit d’entrée minimal, du faible couplage entre les
axes et de la compensation d'accélération.' '
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1 INTRODUCTION

This report summarizes the results of an extensive study
. of some major control-theoretic aspects of a particular
gyroscope/ rebalance loop configuration. The gyro was designed
by Litton Systems Canada and is similar to previous generations
of two degree-of-freedom, dry, tuned-rotor gyroscopes [1]
except for the way the flexures are made and machined into the
gimbals. These innovations have resulted in the potential to
produce a good quality gyro at a cost lower than current
comparable devices. Preliminary testing at the Defence Research
Establishment Ottawa (DREO) inertial navigation laboratory has
been very encouraging and indicates that this instrument may be
very near to inertial grade quality. A summary of the gyro's
. innovative features and the preliminary test results may be
found in (2].
' Since the gyro was designed for strapdown applications, a
suitable electronic rebalance loop must be designed to keep the
rotor aligned with the gyro case as it rotates with the vehicle
it is strapped to. The loop teceives signals from the gyro’'s
pickoff circuitry that indicate the angular displacement of the
rotor with respect to the case in two axes. The loop supplies
currents to the gyro’s torquer coils that, through magnetic
interaction, apply a torgue to the rotor causing it to precess
at a certain rate in a particular direction. If the loop is
designed properly, the rotor will stay more or less aligned to
the case at all times, and a measurement of the rate applied to
. " the case is available by measuring the current supplied to the
torquer coils. - '

Though simple in concept, the design of suitable rebalance
‘loops has proven to be a nontrivial problem. In particular, it
is a two—input, two-output control problem sv it is difficult
to apply classical single-input, single-output control design
techniques directly. To do so naively would generally tesult in
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a closed-loop system that has high interaction (a.rate on one
input axis of the gyro produces a non-negligible output reading
on the other axis). In addition, the traditional tradeoffs of
tracking versus stability margin and bandwidth versus noise
rejection have to be addressed.

Rebalance loop designs can be divided into two major
groups - analog and digital. The digital designs are attractive
since they directly produce digital data for the system
computer. It can be argued, however, that for high accuracy
applications, analog loops are better. Unfortunately, the
analog information must be converted to digital form for the
computer and this is a difficult problem. That, however, is
beyond the scope c¢f this study. Each of the preceding
categories can be divided into schemes that employ "cross—-axis
compensation" and those that do not. Cross-axis compensation
attempts to eliminate or reduce the interaction between the two
‘axes of the gyro. Without it, the loop can be designed as if
there were two single-input, single-output loops. However the
results are better if the inherent multivariable nature of the
system is taken into consideration. |

Several research groups are currently studying various
‘rebalance loop techniques for the €5G-2. DREO [ 3] has developed
a high performance analog rebalance loop (with and without
cross-axis compensation) to enable the inertial navigation lab
to make accurate performance tests of the C€sG-2. Such a scheme
can then be evolved into any end-use system that employs this
gyro. It is the -purpose of this report to analyze the DREO
rebalance 'loops and the gyro as a closed-loop control system.
This was done by studying the expected tesponses of the system
(in both time and frequency domains) and caiculating various
measures of performance (tracking errots, sensitivity;
‘robustness, etc.). Extensive simulation software was developed
to do this. No attempt was made to model the expected but
unpredictable effects in the system, such as thermal effects in
both the gyro and rebalance loop, random gyro drifts, etc. Such
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effects can best be ‘determined experimentally and will be done
so upon completion of the loops; this will be the subject of
subsequent DREO studies.

2 SYSTEM MODELLING

This section is a summary of the system models that were
used during the design and analysis of the rebalance loops.
Most of the derivations are omitted for brevity.

2.1 Simple Gyro Model

A complete description of a typical tuned-rotor gyto is
very complex. For an exhaustive tcieatment of the subject, the
reader is vreferred to (4},{5). In those papers, there are
several models of the gyro one can use depending on the degree
of accuracy required. For example, during gyro construction, it
may be important to - know ‘the effects of asymmetry in the-
flexure spring constants.' For the purposes of this study,
however, a very simple gyro model was used. This is justified :

-because a stable, -closed-loop control system is generically
- robust with tespect to slight variations in the open-loop plant

dynamics (eg., c¢lassical gain/phase margins). Though this is not
true for multivariable, open-loop unstable systems (6}, it is
true for the CSG-2 as it is open-loop stable. _ '

' The ideal tuned-totor gyro is symmetric with réspect to

- its two input axes, has negligible internal damping forces, and

is running at exactly tuned speed. Then, all internal spring
forces “balance out" and the rotor will remain stationary in
inertial space should the case rotate about it and no rebalance

loop were in place.

The equations of motion for the gyro are




] H
1 1 T(s) - — T_(s)
ex(S) - -Twcx+ ;l-? X ISI y
1+ 5—)
(5
1 1 [ Ts) + Hor(s)
0 (S) = = — @ + =3 y sI 'x
Y s cy H sI)2
1 ()
or in matrix notation
] ;
ex(S) Lo_ 1 “cx(S) . I/Hz 1 -H/sl Tx(s)
8,(s) s |o_,(s) sI)2
Y cy 1+ ( H) H/slI 1 Ty(s)
where
s is the Laplace variable,
is the angular momentum of the cotor,

1 - is the moment of inertia of the rotor about
~an axis through the plane of the rotor,
Ty Ty are torquer currents produced by the tebalance loop,
"”cx'“ey -are the angular rates applied to the gyro case,
ex,ey.f; are the pickoff angles 5enséd'by’;he*:ebalance
loop. - ' ’

Note that am important constaant that»‘appears in the above
. equations is (H/I). This term defines a natural freguency,
called the “nutation frequency” of the gyro and for the CS5G-2,
“this is 165. Hettz or 1036.7255 r lians/sec. Let the nutation

’frequency,be ‘ ' '

W, = B/1 = 1036.7255 rad/s.

| (The symbol := ot =: denotes a definition.) To notmalize the
=aodel, one can define

§ iw s/w, = SI/H
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and absorb a factor of 1/H into the torquer current terms, Tx
and Ty' This is realistic because these terms are included in
the gyro’s “torquer scale factor", a constant that represents
the conversion of current to a rotation rate of the rotor due
to the torquer coils. The model of the gyro in the frequency

domain then becomes (dropping the implied functional dependence

s o
X

-
o

P'g

on s)
ex _ ) _l. “cx . I/mn ; i -1/s Tx
By 5 mcy gi e 1 1/s 1 Ty

If ¢, and ‘ry are defined as the absolute angular positions of
the rotor; '

1 =1/s5 Tx

x| Lo 1 .
Yoy 5 + 1 |Ms. 1 Ty
=t P(5) gx
R yu

“and the factor of l/wn is ignored (this will be absorbed into
the gain term of the compensator), then a very compact
- fregquency domain desctipticn of the open-loop gyro results:

Oy | 1 |[Dex - T - |

ol - T T8 e * W (1

Y cy . Y ‘
2.2 Rebalance Loop Nodels

The rtebalance loop consists of a 2 by 2 transfer function
matrix with input pickoff signals, 9, and By. and output

torquer currents, T, and T,- In general terms, this is




represented by

T, (8) ~C(s) -D(s) 6,(s)
Ty(S) D(s) -C(s) ey(s)
0. _(s)
=:  K(s) X (2)
ey(s)

where D(s) represents the "direct-axis" compensation and C(s)
is the ‘"cross-axis" compensation, so named because a torque
applied on the x-axis has a much stronger effect on the
y-pickoff angle than on the x. The cutputs of the rebalance
loop are taken as the torquer currents since they provide a
measure of the torque required to realign the rotor with the
case, and hence a measure of the applied case rate. The outputs
are not the total torquer currents, however, only the portion
due to the direct-axis compensation:

ouT_(s) D(s) 0 0. (s)
X e X (3)
OUTy(s) * 0 D(s) ey(s) ‘

DREO has developed two rebalance loop schemes dubbed RL-2
and RL-3 (3] and has applied for a patent on the designs (DND
invention 1416-86-001). The first, RL-2, has no cross-axis
compensation so C(s)=0. The direct-axis term, D(s), consists of
an integrator and a fourth-order, low-pass filter. Thus,

RL-2 : D(s) = Gl(s)Gz(s)G3(s) H C(s) = 0.
where, in the notation of (3],

=
Gl(S) - pl 1 + 3




2
P3

G,(8) =
2 : szr+ 2p3p4s +4;§

2
Pg

63(5) s2 + 2p6p7s + pg
For a complete 1list of the parameters of D(s); the reader is
referred to Appendix A. Reference (3] describes in detail the
process by which the parameters were chosen. The basic approach
was to vary the parameters until the frequenc§ response of the
closed-loop direct-axis transfer function had a fairly smooth
magnitude response (and a suitably high bandwidth) and good
phase response characteristics for a degree of stability
‘margin. In RL-2, there was no consideration given to the
closed-loop crogs—axis transfer function so a relatively large
degree of interaction was expected.
The second loop, RL-3, employs the cross-axis term, C(s).

RL-3: D(s) = Gl(s)Gz(S)G3(s)G4(8):
C(s) = Gl(s)Gz(s)Gdts)Gs(s)Gs(s)
where Gl' GZ' and G3 are as above and,

2 2
8" + Zpspfpes + Po
Gyls) = — —3

s + prpes + P

(spin notch filter)

2
Ge(S) = pgs Pe
5 8 s2 + Zpdpcs + pi
2 2
§° 4+ 2P .PoPnS + P
66(5) - , atglh 9 .

s2 + Zpgpbs + pg

Again, a complete list of the parameters is given in




Appendix A. Note that the functions, Gi(s), are not necessarily
the same in RL-2 and RL-3. Note also that p, is the principle
gain term in the compensator; this is the term that absorbed
the 1/wn from the plant model. The design procedure for RL-3
was essentially the same as that for RL-2 except the cross-axis
closed-loop function was also considered. In the next section,
it will be seen that perfect decoupling (that 1is, zero
interaction between the two gyro axes) can be obtained if C(s)
= s D(s). However, this is not an acceptable solution as
Section 4.1 will note that this would result in an imaginary
axis pole - zero cancez:lation in the closed-loop transfer
function, causing internal oscillations and hence instability
(in modern control theory terms, this 1is an unobservable
unstable mode). The idea behind the design of the cross-axis
compensator in RL-3 was to make C(s) approximately equal to
s"D(s) at low frequencies {(over the bandwidth of the
instrument) to provide near perfect decoupling at these
frequencies, but to make C(s) sufficiently different from
s D(s) at higher frequencies to provide stability. An
additional benefit of RL-3 is that it provides "cross-axis
acceleration cancellation", a concept described later,
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2.3 Closed-Loop Equations
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2.3.1 PFrequency Domain Descriptions

P

The previous section established the two primary equations
of the system, equations (1) and (2). From these, the
closed-loop system can be drawn as in Figure 1 below.
Abbreviate notation slightly and define
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Fig. 1: The closed-loop system

The resulting loop looks very much like a classical
feedback system except that it must be remembered that each of
the signal lines is actually a vector of 2 signals and each
N block is a 2 by 2 transfer matrix. The closed-loop equations
X _ are developed with standard matrix algebra:

’ O = =, + &
a% R - "‘c + PKO
i » [1,-PK]6 = =4,
-1
%} » 0 = —[IZ-PKI ¢c | (4)

. - -1/5 [1,-PK)"Ye
» OUT = -D/& (Iz-px)‘lwc (5)

where I, is the 2 by 2 identity matrix. Recall that D(s) has an
extra factor of l/mn in it as a result of normalizing the
plant. This is why s is also multiplied by l/uw, in equation
(5).

R 1t is these equations upon which much of the subsequent
analysis is based. If the matrices of P and K are substituted
into ({5) and the operacions carried out, the closed-loop
transfer functions are obtained:
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ouTt, -D §(§2+C+1)+D -DS+C Pox (6)

ouTy i (3%24c)% + (3+0)° DS-C 5(8%+c+1) 4| [“ey

As noted in the previous section, if C=Ds” then the
closed-loop cross-axis function 1is clearly 0 but if C=Ds” is
substituted in the direct loop, it can be shown that there will
be a pole - zero cancellation at s =+jl, (i.e. a closed-loop
pole on the imaginary  axis at s=¢jwn) indicating a
destabilizing compensator.

2.3.2 State Space Description

It was convenient to express the system models in a state
space form (see any text on modern control theory). This
involves the formation of a vector x and matrices A, B, E of
appropriate dimensions so that the equations

x = {A)x + [Blu

y = [Elx
describe the time domain dynamic behavior between the input
vector u and the output vector y.

The nominal gyro model has a very simple state space
representation. Take the input vector, u, as the torquer
currents, T. The output vector, y, and the state vector, x, are
both defined as the absolute angular rates of the rotor.rwr.
The measured output vector (the pickoff angle, ©), is the

integral of the difference between the rotor angular rate, W o

and the case angular rate, w,. Hence,
x = [A)x + [B]T )
= [Elx j (1)
0w W, ¥ 0,

wherte
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w ¢
w_ = Rotor angular rate = wrx = $rx
ry ry
0 - o 0] 1 0
[A] = " [B] = [ (E] = .
W, o (' 0 0, ' 0 1

The Laplace transform of this model 1is exactly the
frequency domain model of the gyro, equation (1),

The state space matrix of the rebalance loop is much
larger than that of the gyro so for brevity it is omitted., It
is a simple controllable canonical form of the transfer
function of the loop with the appropriate interconnections. It
has up to 22 states {(for RL-3), has two inputs and two outputs,
and will simply be expressed as

2 + [Y]® } (8)
where the matrices ¢, ¥, and T are of dimensions 22 by 22, 22
by 2, and 2 by 22 respectively. The augmentation of systems (7)
and (8) results in the £following closed-loop state space
description:

X A BT 0] |x 0 Wy )
2| = 0 ¢ Y z| + 0
é E 0 01 |e -1, | |Yey|
. 5 : (9
0 = I b ,
| 30 I Lt I
0 /

The system in this form (which is the time domain
equivalent of ‘the frequency domain description (6)) is more
amenable to computer simulations., Time domain simulations are
simple with a general differential equation solving program and
closed-loop stability can be determined at a glance from the
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eigenvalues of the closed-loop state dynamic matrix (the eigen-
values are exactly the closed-loop poles).

3 ANALYSIS SOFTWARE

Extensive software was written to simulate the models
discussed in the previous section. Various frequency domain
properties of the closed-loop system could be examined from
equation (5) such as frequency responses, sensitivity, and an
attempt at multivariable Nyquist plots. Closed-loop time
responses are available from the propagation of equation (9)
for arbitrary rate inputs, Stability is determined from the
eigenvalues of the closed-loop state space matrix. Root locus
plots are also made by finding closed-loop pole locations as a
function of some parameter.

Since commercial software for eigenvalues or differential
equations was not immediately available at the time of the
study, educational software routines were adapted to perform
these functions. Consequently the programs are not guaranteed
to be efficient, though they are quite accurate.

Some of the analysis software, particularly for the
frequency domain calculations, was expanded to incorporate a
more conmplex dynamic model of the gyro which included internal
damping and time constant terms. This is examined briefly in a
later section. | ' |

4 SUMMARY OF RESULTS

This section summarizes the major results of the study.
P.ust, stability was verified by the 1location of the
¢losed-loop poles of the nominal system and the examination of
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root locus plots - the 1locus of the poles as a particular
parameter is changed. This gives some indication of sensitivity
to gain variations. Next, several time response simulations
were conducted and the most visible differences between RL-2
and RL-3 can be seen from these. Time domain steady-state
responses were calculated from the closed-loop transfer
functions and an application of the £final value theorenm.
Various frequency domain properties were calculated, including
closed-loop responses, Nyquist and sensitivity plots, and an
attempt at their interpretation is given.

4.1 Stability

The eigenvalues of the closed-loop state dynamic matrix of
Section 2.3.2 (eq. 9) immediately indicate the stability of the
system. Table 1 1lists the closed-loop poles of the nominal
systems for both the RL-2 and RL-3 configurations. All the
poles must lie in the left half of the complex s-plane, {s: Re
g8 ¢ 0}, for stability. From the table, this is evident as all
real parts are negative.

Table 1: Nominal closed-loop pole locations

RL-2

EIGENVALUES OF CLOSED-LOOP MATRIX

Real part Imaginarvy part
-97.20 __— 1082.46
-97.20 -1082.46

-991.70 944.55

~991.70 -944.55

-861.65 952.70

-861.65 -952.70
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First, notice that RL-3 has many more poles than RL-2

-701.75 324.55
-701.75 -324.55
-96.01 487.26
-96.01 -487.26
-199.76 200.63
-199.76 -200.63
-37.53 0.32
-37.53 -0.32
RL-3
. EIGENVALUES OF CLOSED-LOOP MATRIX
: ii Real part Imaginary part
] - mememr s nee e ————-
1
% -1152.,12 -1591.93
it -1197.68 1466.09
¥ -1197.68 -1466.09
4 -139.54 1259.83
R -139.54 -1259,83
-496,29 1175.13
-496.29 -1175,13
-1062.68 600.50
-1062.68 ~600,50
- =-89.99 885.03
-89.99 -885.03
- =600.96 789.71
-600.96 ~789.71
~59.64 ~-669.37
-46.15 670.55
-46.15 ~670.55
A -615.28 108.96
. -615.28 -108.96
a8 -247.55 402.29
‘Q -247.55 -402.29
o -235.95 379.70
i -235.95 "'379070
e -37.20 1.25E-04
-37.20 -1.25E-04
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because of the cross-axis compensation and a spin notch filter
(G4) that was added to each loop of RL-3 to reduce some of the
noise introduced by the spin motor. It is Jdifficult to tell
"how stable" the two configurations are by pole locations. The
poles that appear the "least stable" are the ones at
approximately (-37+j0) because they are closest to the
imaginary axis of the s-plane,

However, a feel £for stability is obtained by a simple
multivariable gain margin. For single-loop systems, recall, the
gain margin is the amount of pure gain that can be added to the
open-loop system before the closed-loop becomes unstable. This
system is a multi-loop configuration and it is not clear how to
determine a suitable measure of gain margin., (See [6] and the
references therein for current research in the area.) One
method is to simply change the gain of the open-loop system (by
changing the coefficient Py in the compensator model) and check
stability by the location of the closed-loop poles. This is a
direct multi-loop generalization of classical "root locus"
plots. Figures 2a and 2b show the location of the poles of the
two configurations as Py increases from its nominal value to a
destabilizing value, indicated by u pole crossing to the right
half plane. Bach pole is shown with an arrow indicating its
direction of travel as Py increases. The large dot on each
locus indicates the pole location for the nominal value of Py
approximately 0.2. Note that only the upper half of the s-plane

“in shown. There is a symmetric set of poles in the lower half
plane due to their complex conjugate nature. These plots were
software generated, as the well known rules for constructing
the root locus of single-loop systems do not carry over to the
multi-loop case. The results of this test are indicated in
Table 2. ' ‘
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Table 2 ': Results of root locus tests

Loop Nominal gain Destabilizing gain
RL-Z pl = 002 pl - 0 u27

Table 2 indicates that the gain in RL-2 can be increased
35% (2.6 db) and that of RL-3 can be increased by 120% (6.8 db)
before the system is unstable. Both are good margins but
obviously RL-3 is better.

The root locus plot of a special case of RL-3 was briefly
examined. As noted in a previous section, if C(s) = s D(s),
perfect cross-axis decoupling would result but the closed-loop
would have imaginary axis poles. This is demonstrated with an
appropriate choice of compensator parameters so that
Cls)=(py)s™D(s) with pg varied around 1.0. The list of
- parameters used in this test can be found in Appendix A. The
resulting root locus plot is shown in Figure 3. Indeed, a pole
. does cross to the right half plane as Pg exceeds 1.0 verifying
- that the systesm is marginally unstable for C(s)ws"D(s).

4.2 Time Domain Simulations

‘Simulations of the closed-loop systems for various input
- case rates were conducted by numerically integrating the set of
'_diffetential egquations (9) with a fourth order Ruhge4xutta
algorithm. In all examples, the y case rate is set to zero, so
the direct-axis response is indicated by the x-outputs und the
cross-axis response is shown by the y-outputs. For inputs on
the y case axis, the results are identical except for the sign
of the cross-axis response. '




18

VAX GPLOT
» 17-DEC-86
Root Locus, Special case CeD3, P8 = .8 to 1.2 by .3
1850
1 o>
1009 -
1+
I -
- -
750
4
Se0
B o
- A
2so
i L&
. L . L4 1 L) v L
-1000 =800 =660 -400 -200 L cee
Re |

Fig. 3;'rqot locus of special case c-(pa)Ds“. varying,pa

4.2.1 Step Responses

The system outputs, OUT, and buwy. and the pickoffs, 0,
and 6,, are examined for both RL-2 and RL-3 for step changes in
case rate (0 to 1 vad/s at t=0) and acceleration (0 to 1
tad/s/s at t=0) on the x case input axis. The results ace shown
in Figures 4 through 8. First note that the transients are all
practically ‘negligible after about 0.1 seconds indicating a
very tight loop that should meet the requirements for a
strapdown gyto.

Fotr a step rcate case input, the direct outputs of each
loop (Figure 4) exhibit an ovecrshoot of about 30%, for a step
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rate input, and some slight ringing for a few milliseconds
which is quite acceptable. One of the principle differences
between RL-2 and RL-3 can be seen from these same figures in
their cross-axis transients. In RL-3 they are very much reduced
from what 1is exhibited in RL-2. This is the effect of the
"cross—-axis  compensation" that was designed into RL-3.
(Analogous comments for the pickoffs, Figure 5.)

For a step change in acceleration, the results are shown
in Figure 6. The direct-axis rate outputs blow up since they
indicate the input case rate, a linearly increasing function.
It is the cross—-axis outputs that demonstrate the other major
advantage of RL-3. The cross-axis responses are magnified in
Figure 7 for effect. The y-output of RL-2 shows that a
steady-state rate was applied to the y-input when in fact there
was none. The magnitude of this “apparent" rate is equal to
/v, times the magnitude of the input acceleration on the other
axis, where W, is the nutation frequency, 1036.7255 rad/s. In
RL-3, this effect completely dies out after a few milliseconds
(see Figure 7b and note the vertical scale is 10 times larger
than that of Figure 7a). This is called “acceleration
cancellation". The pickoff response to accelerations (Figute 8)
of RL-2 and RL-3 is much the same, differing in the magnitude
of the cross-axis transients. The x-pickoff exhibits the same
steady-state value in both loops so the actual *cancellation®
is done at the outputs, not the pickoffs. In the next section,
the expected steady-state output and pickoff values are
computed for different inputs to verify the simulations.

In summary, the time responses appear to be quite
satisfactory for both loops, the major differences being the
amount of cross-axis transient response (reduced by roughly a
factor of 10 in RL-3) and the steady-state acceleration effect
{the steady-scate output cn the y- axis for an acceleration of
1 rad/s/s on the x-axis is -1/1036.7255 = -0.0009646 rad/s for
RL-2 but is zero for RL-3).
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4.2.2 Steady-State Results

Steady-state responses to step changes of input rates and
accelerations are computed with the frequency domain model and
the (£final value theorem. Briefly, the £final value theorem
states that the steady-state time response, g(t+=), of a STABLE
system, L(s), to an .input signal f(s) can be found by

lim g(t) = 1lim s L(s) f(s) .
tow s-0

The input signal will be taken as

Wey i} [ 1 ] 1

wcy 0 g
where n=]1 for a constant rate on the x case axis and n=2 for a
constant acceleration. The y input is fixed as 0. Since the
closed-loop stability of both RL-2 and RL-3 has been
established, it is wvalid to use the final value theorem. The

steady-state outputs of the closed-loop system (6) are found
by:

L [OUT®) . our, (s)

m w lim s

toa |OUT (0)] O S louT (s)

- lip -2 -D , §(8%+ce1)+p  -Di+C 1
0 50 G4c)? + (en)? D§-C § (82+c+1)+n| |0

As an example, the final outputs of RL-3 under constant
acceleration (n=2)} on the x-axis are computed:

OUTx(t)

| = 1im -b/s 5 (52%4ce1)ep
OUTy(t)

lim
s+0 (5%c)? + (5+4p)° DE-C

tre
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= lim _Dz ~ -Dgs — > §(§2+C+1)/D+1
520 D s“+C + |8 ~
[——-—-D ] [‘5 +1] S"’C/D
"8 [(~2 1]
= lin - Eﬁj(s +041 )+ (10)
50 & ..
L s Ds
F 1 (=2 1]
- lim - E;B(s *C+1]*“E' i
50 1/w ~C/(Ds)

The fact that 1/D(0) = 0, due to the integrator, has been used
to obtain (10). Now recall from the structure of D(s) and C(s)
that C(0)= (pl)(pz)(pa) and note that the limit (as s30) of

sD(s) is (pl)(pz)o 50

lim OUTx(t) g ®
tse loUT, (t) wa=pg|
With a c¢hoice of pa-l/wn. zero steady-state y output for an
input x acceleration results. Of course, the x output has gone
to negative infinity since the input x rate has gone to plus -
infinity.

Other outputs are computed similarly. The steady-state
pickoffs can be found in this way too since, from (5),

0(s) = 1/[D(s)wn] ouT(s).

The results ate‘compiled in Table 3.




Tablé 3: Steady-state values

RL-2 RL-3

Pickoffs Outputs Pickoffs Outputs

Gx Gy OUTx Gx Gy OU’I‘x

Wop ™ k rad/s

(Rate) _
Wox™ k rad/s2 -k 0 -~k 0
(Acceleration) PyPy%, P1Py%,

0 0 -k 0 0 -k

The steady-state results of RL-2 and RL-3 are identical
except for the cross-axi; output for constant acceleration.
This 1is the acceleration cancellation that RL-3 provides. Note
that, under constant acceleration, the x pickoff is nulled by
neither loop; the acceleration cancellation is occurring at the
outputs, not the pickoffs. Note also that this cancellation
(the zero signified by * in the table) depends on p, being
exactly equal to l/wn. Any deviation will result in a nonzero
output. All the other =2eros in the table have no such
dependency. They were caused by multiplying a constant by an
's' and then letting s go to zero.

4.2.3 Roll Rate Tests

This brief section demonstrates that the rebalance loop
causes no angular position error build-up as the gyro swings
through an orientation change. A very simple model of an
angular position profile of an aircraft roll is shown in Figure
9, This is made up of the following functions: '

¥ " y ‘ap gy o .
; %
s »’ [P T e b

0.5t - "0“&“5“
olt) =
1.0 , 2 ¢t

sin nt , 0 ¢t g2
¢

§ o s o
e )‘u f;;{’

This would correspond to an aircraft banking smoothly to a 1
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radian (57 degree) "  roll angle in two seconds. The sinusoidal
form is <chosen as it appears realistic and it has continuous
derivatives., Thus, the corresponding rates and accelerations
are smooth as well. The input case rate profile, then, is

0.5 - 0.5 cos nt , < 2

t
w_ (t) =
cx 9. , <t

and is shown in ~igure 10. The output rate and integrated
output rate for both RL-2 and RL-3 trace the same curves as
their corresponding inputs at these scales., Figure 11 shows the
difference Dbetween the input angular position and the
integrated output rate, which is called the roll error. It can
be seen that during the maneuver, the roll error peaks at about
0.0006 rad (0.034 deg) for both RL-2 and RL-3 and returns to
zero after the maneuver is completed. The impact of this error
on navigation system accuracy will be minimal., For
completeness, the integrated cross—axis outputs are shown in
Figure 12, Note that the RL-3 response has been magnified
100,000 times, once again showing the superior cross—axis
compensation of RL-3 for low frequency inputs. '

4.3 Frequency Domain Characteristics
4.3.1 Closed-Loop Frequency Response

The closed-loop fregquency response of equation (6) is
tepeated from (3). The magnitude and phase responses of the
direct and cross-axis closed loops for both RL-2 and RL-3 are
shown in Figure 13. (The direct closed-loop shown here is the
1,1 element of the c¢losed-loop transfer matrix which is
identical to the 2,2 element. The cross loop shown is the 2,1
element; the 1,2 element is identical but for an additional -
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phase shift of 180 degrees.)

Extensive interpretations of these are available in [3] so
only a few comments are made. First, the horizontal scale of
all frequency response plots is in terms of the log (base 10)
of the radian frequency. The nutation frequency, for example,
is at 10910(1036.7255)=3.016. The bandwidth of the direct loop
is around 80 Hz (2.70) for RL-3 and 90 Hz (2.75) for RL-2.
Bandwidth here 1is defined as the frequency at which the
magnitude drops to -3 db. The magnitude of the cross-axis
transfer function 1is generally much larger for RL-2 than for
RL-3. This 1is expected because the cross-axis compensator was
designed specifically to reduce the magnitude of the cross-axis
transfer function at low frequencies while leaving the high
frequency response alone to provide for a stability margin. The
deep notch in the magnitude function of RL-3 around 105.5 Hz
(2.82 on the log scale) is due to the spin notch filter in the

direct-axis.
4.3.2 The Sensitivity Function

A very powerful frequency domain tool to analyze control
systems is the sensitivity function. It provides at least two
valuable pieces of information. It gives an indication of,
first, how well the closed-loop system "tracks" its inputs, and
second, how "sensitive" the closed-loop system is to changes in
the open-loop.

Consider the system of Figure 1 as though it were a
single-loop system, with open-loop transfer function P(s)K(s)
and closed-loop function ¢r(s) = M(s)¢c(s), M(s) := -P(s)K(s)/
(1-P(s)K(s)). The sensitivity function, S(s), is defined by

K - aM/M -1 ——l_—_.
S{s) = ZTPRI/TPR) ToBK

For multivariable systems the open-loop is a matrix P(s)K(s)
and the closed-loop matrix, from (4), is (dropping the 3)

o
‘t‘:.t ALY _

K ANl Urdytfedy)
SR N AR AR

O AN A NAT AT A P LY I A AT AL, SRR TS A Ty AR LA i
ai_"a'ﬁ*'a!‘%"vb‘tfi BRI BRI 2\. SIS LN, VALY '\%\\\\*} A
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¢r-M¢c, M-—PK[I—PK]—l. Though the mechanics of derivatives with
respect to matrices is more involved, the end result is the
definition of the multivariable (output) sensitivity function,

S(s) = [I-PK]™}

analogous to the single-loop case. But this function is exactly
the function in equation (4) relating the pickoff angle, 6, to
the input case angle, ¢c. Therefore if the magnitude of the
sensitivity function 1is kept small over certain frequency
ranges, then the magnitude of the pickoff angle (the tracking
error) will be small for input angular positions at those
frequencies, since le(jw)|5!S(jw)|]¢c(jw)|.

The obvious question is how to measure the magnitude of a
matrix. The simplest way, since this system is only a 2 by 2
system that is in fact nearly symmetric (with equal diagonal
terms and only the signs of the off-diagonal elements
differing), is to look at the magnitudes of individual elements
to get direct and cross-axis sensitivity functions. This is
done in Figure 14 where the magnitudes of the direct and
cross—axis sensitivity functions are plotted as functions of
frequency for both RL-2 and RL-3.

The direct-axis sensitivity functions tend toward 0 (-«
db) at zero frequency (-« on the log scale) indicating zero
asymptotic tracking error of constant angular position inputs;
furthermore their slopes, as the frequency approaches zero, are
40 db/decade indicating that constant rate inputs are
asymptotically tracked as well (a 20 db/decade slope indicates
a 1l/s in the 1loop to null angular position errors, a 40
db/decade slope indicates a l/s2 in the loop to null rate
errors as well); their magnitudes are below -20db (.1 gain)
for frequencies up to approximately 30 rad/s or 5 Hz (1.5 on
log scale) which is very good low frequency tracking (the same
can be seen from the «closed-loop fregquency response; the
magnitude response is flat well beyond 5 Hz but the phase
starts to drop appreciably above S5 Hz creating sinusoidal
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steady-state tracking errors); the sensitivity is éreater than
0 db for frequencies above 18Q rad/s or 30 Hz (2.25 on the log
scale) indicating poor tracking of these frequencies. It is
noted that RL-3 has a little better direct-axis sensitivity
than RL-2 as it has a lower peak (6 db compared to 10 db).

The sensitivity in the frequency range from 30 to 80 Hz
(2.25 to 2.7) may be of some concern to the behavior of the
‘system, as this range is essentially within the closed-loop
bandwidth. Should there be any significant open loop
uncertainties in this range, the closed-loop response may not

be as expected since the system is fairly sensitive at these

frequencies. At lower frequencies the sensitivity is
significantly less and at higher frequencies, the closed-loop
bandwidth 1is exceeded so any effects would be attenuated. This
frequency range 1is typically outside most vehicle maneuver
capabilities and would only be of concern in a high vibration
environment and when there is significant uncertainty in the
nodels.

Similar remarcks can be made about the cross-axis
sensitivity function. The cross-axis sensitivity of RL-3 is
much lower, over the bandwidth, than that of RL-2. Again this
is one of the intentions of RL-3 - to reduce the magnitude and
the sensitivity of the cross-axis.

A more mathematically precise way to measure the size of a
matrix is through the use of a suitable norm such as the matrix
2-norm. The 2-norm of a complex-valued matrix S(jw) is the
square root of the maximum eigenvalue of s*(jw)S(jw) where
S*(jw) denotes the complex conjugate transpose of S(jw). This
quantity is known as the maximum singular value of $(jw) and so
the norm is often referred to as the singular value norm. In
Figure 15 the maximum singular values of the sensitivity
functions of RL-2 and RL-3 are plotted as functions of
frequency. These plots indicate essentially the same things as
the direct-axis sensitivity functions so they are discussed no
further. There is a partially developed theory to ensure the
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robust stability of a closed-loop system under certain plant

changes based on this singular value norm. The approach was
applied to this problem but the results were inconclusive for a
number of reasons, so the procedure was dropped.

In summary, the sensitivity functions of both loops appear
well behaved both in terms of tracking and parameter
sensitivity.

4.3.3 Nyquist Plots

The Nyquist plot, one of the most important tools for the
design and analysis of single-loop systems, carries over
logically to multivariable systems but its interpretation does
not., Two types of Nyquist plots were used, The first was the
well known multivariable form, i.e., the image of the Nyquist
"D-contour" under the map det[I-PK), where "det" signifies
determinant, must satisfy certain encirclement criteria. For
the second type, one of the loops on one axis of the gyro was
broken and the resulting system was considered as single-input,
single-output,

For single-loop systems, the Nyquist criterion is well
known: the image of the standard D-contour under the map,
1+L(s), where L(s) is the open-loop transfer function, must
encircle the origin as many times as there are unstable poles
of L(s). Typically, one looks at the image under the map L(s)
and checks for encirclements of the (-1+j0) point which is
equivalent, For tigorous definitions of D-contour and
encirclements, see any text on classical control. If the system
is open-loop stable, the gain and phase margins are read
directly off the Nyquist plot. ' '

For multivariable systems, the criterion is that the image
of the map det[X+L(s)) must encircle the origin as many times
as there are unstable poles of L(s), counted according to
McMillan degree (see [7), for example). However, it is not
equivalent to plot the image of det{L(s)) and check the (-1,0)
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point because of the determinant function. The loop transfer

function for this problem is L(s)=-P(s)K(s) which is marginally
stable. It has 2 poles at the origin, due to the integrators in
K(s), and a pole at each of +jwn and —jwn, due to the simple
model of the gyro adopted. These poles are avoided when forming
the D-contour as shown in Figure 16.

Fig. 16: Nyquist "D-contour"

The multivariable Nyguist plots of both RL~2 and RL-3 were
computed and plotted but were found to be very complicated.
There were several circles of infinite radius due to the small
indentations around the open-loop poles on the imaginary axis.
It was found, by tracing the curves carefully, that there was
one clockwise and one counterclockwise encirclement of the
origin for a net of zero encirclements which equals the number
of open-loop poles in the right half plane. This verified that
the closed-loop was indeed stable but there was no direct
indication of a measure of gain or phase margin available from
it. The reason for this is the complex way in which the
determinant function intertwines the four transfer functions in
- the matrix 1-P(s)K(s). It was evident that there was some
stability margin because the multivariable Nyquist plot did not
go through the origin which would have indicated no margin.
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For the second form of the Nyquist plot, one of the
pickoff lines is opened while the other remains closed. In this
sense, the remaining system can be interpreted as single-input
- single-output and the traditional Nyquist criterion can be
applied. With the system as shown in Figure 17 (with the x
pickoff 1line broken), the following relations between a signal
f injected at the loop breaking point and the resulting signal

g at the plant output can be written:

) ]

Fig., 17: System with one loop open

Upon  substitution of the expressions of the plant and
compensator matrices and simplification, the following transfer
function results:

gi{s) - Lo(s)f(s)

 §(CE+D) + 2+ p?

§(§3+§+C§+D)

Lo(s) i .
The function Lo(s) will be called an “open-loop transfer
function" though it is, in fact, a result of a system that is
*half open® and “"half closed". The image of the D-contour under
Lo(s) is then checked for encirclements of the (1,0) point.
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Because of the "half ‘open" structure, the Nyquist diagrams will

need special interpretation.

The new "open-loop" function has no right half plane poles
and it has only one imaginary axis pole, that being at the
origin due to the integrator in the unclosed portion of the
compensator. Then the Nyguist D-contour need only have one
indentation along the imaginary axis (at the origin). The full
Nyquist plot is then not necessary. It is sufficient to compute
the portion of the Nyquist plot due to the positive imaginary
axis (also called a polar plot) and ensure that it does not
enclose the (-1,0) point.

The new Nyquist plots for RL-2 and RL-3 are shown in
Figure 18. Neither encloses the (-1,0) point since they both
cross the real axis to the right of (-1,0), so closed-loop
stability is once again verified. Now however, they look
significantly more 1like classical Nyquist plots with somewhat
more reasonable notions of gain/phase margins,

The gain margin (how much pure gain can be added to the
open-loop before the closed-loop goes unstable) is directly
available from classical Nyquist plots by simply determining
how large the plot can be expanded before it goes through the
critical (-1,0) point, (Multiplying the open-loop by a pure
gain will just expand the real and imaginary parts of the
classical Nyquist plot equally; the shape will not change.)
Similarly the phase margin is determined by how large an angle
the plot can be rotated through before it goes through (-1,0).
Typical margins that classical designers try to achieve are 6
db gain margin and 60 degree phase margin.

The interpretations in this case are not guite so clear
but the following measure is proposed: break one of the pickoff
lines as above; to check the gain margin, replace the
ctompensator matrix, K(s), by aK(s), where ’a’' is a positive
number, and increase ‘a‘' until the Nyquist plot goes through
(-1,0); to find the phase margin, veplace K(s) by e"jbkza),
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where ’'b’ is a positive number, and increase ’b’ until the plot
goes through (-1,0). Note that the plots will not simply expand
or rotate as they did in the classical case, but rather they
will also change their shape slightly because the constants,
'a' or 'b’ get embedded in the "open-loop" transfer function.
It 1is felt that this gives a reasonable feel for the degree of
stability that the closed-loop system will have. The results of
this test are shown in Figures 19 and 20 and tabulated below in
Table 4. The figures show the limiting cases; the smallest
additional gain or phase that causes the Nyquist plot to go
through (-1,0).

Table 4: Stability margins

Loop Gain Margin (db) Phase Margin{deg)

WSl L2y

RL-3 (no spin notch) 7.4 : 50

v

"
A
1

vy

)

.

In Table 4, a case of RL-3 without the spin notch €ilter
was included to show that its addition does rteduce the
stability margin but not significantly. It can be noted that
‘the gain margins as calculated here are the same as were found
in Section 4.1 when the root locus of the closed-loop systems
as a function uf,pl (the main compensator gain) was computed
since exactly the same parameter was changed herve. Both of the
systems have some stability margin with RL-3 being very close
to what would be considered a good design by classical
designers. RL-2, on the other hand, seems to lack a sufficient
stability margin. This fact was recognized early in the design
of the rebalance loops and was viewed as an acceptable penalty
to achieve a large bandwidth .in RL-2. At the present time,
there is another version of RL-2 being tested that has a
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‘ significantly lower ' bandwidth but a much better stability

margin.
. There 1is another observation that may be made about these

Nyquist plots. When additional phase was added to RL-2 or RL-3

e A S

. (Fig. 20), the 1lobe around the origin became "stretched" -
points that were close together for the nominal loop (Figure
19) became farther apart (these plots were made with the same
frequency spacing). This effect seems to be an indication of
X reduced stability margin but it is not well understood at the

. r e b o

present time.
) In summary, the Nyquist plots indicate that both loops
have reasonable stability margin, RL-3 being superior.

4.4 Effects of a Better Gyro Model

h A short study of the effects of the gyro's internal
: damping and time constant was conducted. This involved using a
’ more complex gyro model. The model chosen was equation (58) of
{41, This model included all damping forces in the gyro, which
would cause the rotor to slowly align with the case if there
were no rebalance leop around the gyro (in the ideal gyro, the
rotor would never follow the case). This effect has a time
constant of about 100 seconds for the C8G-2. A spin speed
slightly different from the tuned speed will result in some
internal torques that are not "cancelled out", creating extra
dynamics. These effects are easily incorporated into the model
but it is wvery difficult to accurately determine numerical
values that approximate the real gyro without sufficient
experimental data. Some crude experiments were conducted with a
prototype CSG-2 to get a feel for reasonable values. These were
. o then inserted into the model and frequency and time response
! simulations were rcerun. The resulting figures vary
v insignificantly with what has been determined with the use of
the simpler model. ‘This is not surprising ds the excellent
~stability and sensitivily properties of the closed-loop systems
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“have - already been demonstrated. It is difficult tb accurately
fasseés the results without more gyro test data, and since the
‘floops have good sensitivity and stability properties, a
: rigorous investigation was not pursued.

5 CONCLUSIONS

A combination of classical and modern control theory has

" been applied to analyze several important properties of the

~rebalance loops designed at DREO for the CSG-2 gyro. It has
_;been “determined that overall, the loops should perfeorm very
.well. An examination of time responses show that the loops can
handle well over 1 rad/s step rate changes and maintain the
pickoff angles to less than half a degree (the rotor might hit
its stops if the pickoff angle were much larger). The roll
rate test showed no steady state contribution to navigation
system error due to the rebalance loops. The frequency
responses reveal closed-loop bandwidths of 80 to 90 Hz which
should be cquite adequate in dynamic environments. The
sensitivity plots indicate good low frequency tracking
capabilities as well as low sensitivity to parameter variations
or unmodelled dynamic. except possibly in the frequency range
from 30 to 120 Hz. The Nyquist plots show good stability
margins that indicate the systems will remain stable under
large parameter variations (2 to 7 db gain margiﬁ, 40 to 50
degree phase margin). ' ‘
Several differences have been pointed out between RL-2,
which employs no cross-axis compensation, and RL-3 which doés.
The notable advantages of RL-3 over RL-2 are: one, reduced
cross-axis interaction (by a factor of 10 or more); two,
elimination of the phenomenon of a steady-state acceleration on
cne axis creating a nonzero output on the other (im RL-2 this
effect was roughly 0.001 times the magnitude of the
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acceleration); and° three, an increased stability margin
(roughly double) for a 1loop of approximately the same
bandwidth. The price paid by RL-3 is, one, increased circuit
component count, and two, amplifier drift problems in the
cross-axis amps that may add to the bias drift of the gyro.
The cross—axis amps may drift because they are not caged by the
integrators in the direct-axis that remove any drifts when the
loops are closed.

Further testing is to be carried out to determine the
necessity and/or usefulness of the cross-axis compensation, in
light of the higher achievable performance and extra
electronics problems involved.

6 RECOMHENDATIONS

It i :récbmmehded that the RL-3 scheme be the main loop

incoroorated‘ in any prototype system that uses the C8G-2,
chiefly for - its superior pecformance in high dynanic
_envarunman*s. It is also suggested that an interchangeable RL-2
._tjpe~ loop: alse be kept s that a practical comparison of the
two fsche&es can be sade at the system level, i.e., effect on.
- hsvigation  or  AHRE (attztude, head:ng reference systam)
accuracy.. fin‘ thisz . way it SRD he quickly determined if the
-higher performanée? or - ths sxtra ‘electronics probless are.
dozminant. ‘Some . atténﬁien should be pald-to the perfbrmance’ﬁf4
the locps in the 30 to 80 Kz region to ensure that the higher
' ensitivity in this nange is: not det:smnntal. '
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APPENDIX A

LIST OF COMPENSATOR PARAMETERS

RL-2 Parameters

0.2 Pl
31,4159 P2
1255.13 P3
0.707 P4
856.335 P6
0.707 P7

MAIN GAIN

INTEGRATOR CORNER FREQ (rad/s)
DEMOD LPF. CORNER FREQ (rad/s)
DEMOD LPF. DAMPING

NUTATION LPF. CORNER FREQ (rad/s)
NUTATION LPF. DAMPING

Parameters

- St mp L S8 S $ER -

1333.03
.55
D.
890.956 |
1.0 =
1036. ?3
0.05.

0.45

1745,.47
0.65
- 662,876
: 0:05

N o e e v e ves v - -

MAIN GAIN

INTEGRATOR CORNER FREQ (rad/s)
DEMOD LEFF, COBNER FREQ (rad/s)
DEMOD LPF. DAMPING

SPIN NOTCH DEPTH
NUTATXON LPF. CORNER FREQ (rad/s)
NUTATION.LPF.. DAMPING

CROSE AXIS GAIN.-

NUTATION NOTCH EREQ (rad/s)
NUTATION NOTCH DEMR

NUTATION HOTCH DARPING.
DERIVATOR CUNSR FREQ: (rad/s)
DERIVATOR DAMPING . .

SPIN NOTCH FREQ ttad/s)
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&
TN
&h
o Parameters to test C =D s
‘Wg
R
X 0.2 P1 MAIN GAIN
e 31.1459 P2 INTEGRATOR CORNER FREQ (rad/s)
%ﬁ ~1255.13 P3 DEMOD LPF. CORNER FREQ (rad/s)
e 0.707 P4 DEMOD LPF. DAMPING
) 1.0 P5 SPIN NOTCH DEPTH
ﬁ@ 856.335 P6 NUTATION LPF. CORNER FREQ (rad/s)
% 0.707 P7 NUTATION LPF. DAMPING
1.0 P8 CROSS AXIS GAIN
929.911 P9 NUTATION NOTCH FREQ (rad/s)
1.0 PA NUTATION NOTCH DEPTH
0.4 PB NUTATION NOTCH DAMPING

856.335 PC DERIVATOR CORNER FREQ (rad/s)
0.707 PD DERIVATOR DAMPING

662.876 PE SPIN NOTCH FREQ (rad/s)

0.05 PF SPIN NOTCH DAMPING

Note that a notch depth (P5,PA) parameter of 1.0 means the
notch filter is defeated.
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